CH3041 Tutorial 3 Water Chemistry B Answers

1. Define the E_H of a solution and the pE of a solution and explain how they are related.

 $E_H = E_{1/2}$ for the dominant redox couple in solution ($E = E^{\circ}$ -(RT/nF) lnQ), this is referred to as the redox potential of the solution the units are volts. It may be measured using a Pt working electrode and a reference electrode (eg. Calomel) and the value then referenced back to the SHE. There are large errors associated with this measurement and reliable values are typically found in acid-mine drainage waters and swimming pools. A positive E_H indicates that the dominant redox system is an oxidising one eg. $O_2 + 4e^{\circ} \rightarrow 2O^{2-}$ and the size of the potential indicates the strength of this oxidising reagent relative to SHE.

The pE is a measure of the electron activity in solution. $pE = -log\{a(e^{-})\}.$

A high positive pE defines an oxidising environment in much the same manner as a high positive E_H value. The pE value is an indicator of the intensity of electrons in solution.

```
\begin{array}{l} aA + ne- \to bB \\ Q = \left\{B\right\}^b / \left\{A\right\}^a \\ pE^o = 1/n \log K \\ = E^o / 2 / 0.0591 \\ pE = pE^o - 1/n \log Q \end{array} \begin{array}{l} E_H = E^o - (RT/nF) \ln Q \ \ (put in 8.314, 298, 96.5 \ x \ 103, 2.303 \ (ln \ to \ log) \end{array}
```

Most pE values are calculated by measuring the quantities of the various species present in solution to find Q and then using tabulated $E_{1/2}^{o}$ values to calculate pE^o.

Both E_H and pE parameters are therefore used to indicate the redox characteristics of a natural water. $pE = E_H / 0.0591$

2. Calculate the ion activity product for $CaSO_4$ in seawater using the concentrations Ca^{2+} 10 mmol I^{-1} and SO_4^{2-} 28 mmol I^{-1} , the activity coefficients are $\gamma Ca^{2+} = 0.73$ and $\gamma SO_4^{2-} = 0.49$. At 25°C the value of K_{SP} for $CaSO_4$ is 2.6 x 10^{-5} . Calculate the degree of saturation of $CaSO_4$ and predict if this compound is undersaturated or over-saturated in seawater.

```
a_i = \gamma_i [i]
IAP = aCa<sup>2+</sup> x aSO<sub>4</sub><sup>2-</sup> = (0.73 x 10 x 10<sup>-3</sup>) x (0.49 x 28 x 10<sup>-3</sup>) = 1.01 x 10<sup>-4</sup>
```

$$\Omega = IAP / K_{SP} = 1.00 \times 10^{-4} / 2.6 \times 10^{-5} = 3.89$$
 CaSO₄ is supersaturated in seawater using activities

[To show the effect of activities:

$$Q = [\text{cation}]^{\text{m}} [\text{anion}]^{\text{n}} = [\text{Ca}^{2+}] \times [\text{SO}_4^{2-}] = 10 \times 10^{-3} \times 28 \times 10^{-3} \text{ mol}^2 \text{ l}^{-2} = 2.8 \times 10^{-4} \text{ mol}^2 \text{ l}^{-2}$$

$$\Omega = Q \ / \ K_{SP} \ = 2.8 \ x \ 10^{\text{-}4} \ / \ 2.6 \ x \ 10^{\text{-}5} \ = 10.77$$
 CaSO₄ is supersaturated in seawater using concs.]

Remember the activities are just the real available concentrations that include the effects of deviations from ideality.

Another book suggests a K_{SP} of 4.2 x 10^{-5} which gives $\Omega = 2.38$

3. Using the Nernst equation, $pE = pE^{\circ} - 1/n \times \log(\{red\}/\{ox\})$, calculate the pE value for an anoxic water containing $10^{-6}M$ Fe²⁺ in equilibrium with Fe(OH)₃(s) at a pH of 4. Use concentrations as they closely approximate activities in this situation. The value of the equilibrium constant for the dominant redox 1/2 reaction: Fe(OH)_{3(s)} + 3H⁺ + e⁻ \rightleftharpoons Fe²⁺ + 3H₂O is K = 1 x 10^{16} . Recall that pE^o = $1/n \log K$.

$$pE^{o} = 1/n \log K = 1/1 \times \log (1 \times 10^{16}) = 16$$

$$pE = pE^{o} - 1/n \times \log(\{red\}/\{ox\})$$

$$\{ox\} = [H^+]^3 = (10^{-pH})^3 = (1 \times 10^{-4})^3 = 1 \times 10^{-12}M$$
 - the Fe(OH)₃ is omitted as it is a solid.

$$\{\text{red}\} = [\text{Fe}^{2+}] = 1 \times 10^{-6} \,\text{M}$$

- the water is omitted as it is a essentially a pure liquid as it is in vast excess.

$$pE = pE^{o} - 1/n \times \log(\{red\}/\{ox\}) = 16 - \log(1 \times 10^{6}) = 16 - 6 = 10$$

4. Colourless sulphur bacteria may be classed as chemotrophs, autotrophs and lithotrophs which use O_2 as an oxidant. Explain what these terms mean and how this will effect where these organisms exist in the water column and the chemistry in their vicinity.

Chemotrophs Organisms which use chemical for their metabolic energy

(as opposed to phototrophs which use sunlight)

Autotrophs Organisms which build their chemical building blocks from CO₂

(as opposed to heterotrophs which use existing organic matter from other organisms)

Lithotrophs Organisms which use inorganic chemicals as their electron donors in metabolism.

(as opposed to organotrophs which use organic matter as an electron donor)

Colourless sulphur bacteria use CO_2 as a carbon source as they are autotrophs (they build the organic molecules they require from this inorganic source). They use energy from the oxidation of H_2S to form $SO_4^{2^-}$ and the electrons from this process are accepted by oxygen which make them chemotrophs (using chemical energy with O_2 as an oxidant). The inorganic source of electrons is H_2S which is oxidised from S(II) to S(VI) and so they are lithotrophs. The organism will exist where there are reasonable concentrations of CO_2 . There must be available O_2 and available H_2S . The latter is generally formed by bacterial action under anoxic conditions where the *Desulfovibrio* bacteria oxidise organic matter using electrons supplied by a S(VI) $SO_4^{2^-}$ to S(II) H_2S transformation. The colourless sulphur bacteria are to be found on the oxic side of the oxic-anoxic boundary. The organisms generate sulphate which in an oxic environment will tend to oxidise to sulphuric acid and so they will need to be acid tolerant. They are important in the sulphur cycle as they help return the reduced S back to oxidised S for other organisms to use as an electron acceptor.

5. What is redox cycling at an oxic-anoxic boundary? Explain using an example.

Photosynthesis and turbulent mixing of O_2 saturated surface waters ensure that the top layers of water in a stratified water column have a high dissolved oxygen content. Microorganisms will use O_2 in the first instance in respiration as they consume the available dead biomass in this topmost part of the water profile. This results in a gradual lowering of the dissolved oxygen content and eventually as the microorganisms switch to the use of NO_3^- as an electron acceptor the DO content drops to zero. The region where the DO drops to zero is referred as the oxic-anoxic boundary. It is important in redox cycling as the compounds below the boundary will be metabolising using redox couples which operate at steadily more negative (ie. reducing) values. Above the boundary there is sufficient oxygen and so the characteristic redox potential is that of the O_2/H^+ couple.

An element as it descends in the water column will pass from a highly oxidised state above the boundary to a reduced one below the boundary. Organisms around the boundary will use the various different oxidation states of the element for their metabolic processes. This ensures that each element will be cycled many times in the aquatic environment before it is lost to sedimentation.