CH3041 Tutorial 3 Water Chemistry B

Name:

1. Define the E_H of a solution and the pE of a solution and explain how they are related.

2. Calculate the **ion activity product** for CaSO₄ in seawater using the concentrations Ca²⁺ 10 mmol L⁻¹ and SO₄²⁻ 28 mmol L⁻¹, the activity coefficients are γ Ca²⁺ = 0.73 and γ SO₄²⁻ = 0.49. At 25°C the value of K_{SP} for CaSO₄ is 2.6 x 10⁻⁵. Calculate the **degree of saturation** of CaSO₄ and predict if this compound is under-saturated or over-saturated in seawater.

3. Using the **Nernst equation** ($p\epsilon = p\epsilon^{\circ} - 1/n \log(\{red\}/\{ox\})$ calculate the $p\epsilon$ value for an anoxic water containing 10^{-6} M Fe²⁺ in equilibrium with Fe(OH)₃(s) at a pH of 4. Use concentrations as they closely approximate activities in this situation. The value of the equilibrium constant for the dominant redox 1/2 reaction: Fe(OH)_{3(s)} + 3H⁺ + e⁻ Fe²⁺ + 3H₂O is K = 1 x 10^{16} . Recall that $p\epsilon^{\circ} = 1/n \log K$.

4. Colourless sulphur bacteria may be classed as **chemotrophs**, **autotrophs** and **lithotrophs** which use O_2 as an oxidant. Explain what these terms mean and how these metabolic demands will effect where these organisms exist in the water column and the chemistry in their vicinity.

5. What is **redox cycling** at an **oxic-anoxic boundary**? Use an example to illustrate your answer.