CH1012

Tutorial 6

Name:

1. Define the term **principal quantum number**. Which 2 quantum numbers define a 2s orbital?

- 2. Inside a bottle of Coke[®] the partial pressure is 3.5 atm at 25°C. $K_{\rm H}(\rm CO_2, 25^{\circ}C) = 3.3 \times 10^{-2} \text{ mol} L^{-1} \text{ atm}^{-1}$ in water.
 - Calculate the solubility of carbon dioxide in $Coke^{\text{(B)}}$ under these conditions assuming that the $Coke^{\text{(B)}}$ is a dilute solution that behaves like H₂O.
 - Why does the CO₂ bubble out of the Coke[®] when it is opened? (N.B. you will need some calculations here)

Draw molecular orbital diagrams for N₂ and O₂.
Calculate the bond orders and predict the stability of each of these diatomic molecules using these MO schemes.

4. What is **Hund's Rule**?

٠

Illustrate how this influences the magnetic properties of one of the above molecules.

 Draw skeletal structures and provide IUPAC names for the following compounds: CH₃CH₂CH(C₂H₅)CH₂CH(CH₃)CH₂COOH

CH₃CH₂CHCl(CHO)

6. Draw **a 3-D molecular structure** for 4-chloro-2-cyclohexenone.

7. Determine if there are any chiral centres in the following molecules and assign R or S absolute configurations to the chiral centres you find.

