CH1012 Tutorial 4 Answers

1. Draw structures of the following complexes and identify those that may exist as geometric isomers:

2. Ti(III) compounds are coloured, while Ti(IV) compounds are colourless. Why?

Ti(III) there is the possibility of d transitions Ti(IV) the electrons in the 3p orbitals are much lower in energy than the 4s and 3d orbitals

3. What is the **crystal field splitting energy**?

The **crystal field splitting energy** Δ results from the increase in the energies of the dz² and dx²-y² orbitals of the 5 x d orbitals as ligands approach the isolated metal ion (where all 5 orbital are of the same energy). The triply degenerate set of orbitals (dxy, dxz and dyz) at lower energy is called the t_{2g} set and the doubly degenerate set (dz² and dx²-y²) e_g. The energy separating the t_{2g} and e_g sets is called the crystal splitting energy Δ .

 $e_{g} - \Delta$ $t_{2g} - - -$

4.	Assign the oxidation state of nitrogen in the following molecules:									
	N	O_2^-	HNO ₃	N ₂ O						
	+I	II	+V	+I						

- 5. Determine if the following reactions are redox or metathesis reactions, explain your decision. For <u>redox</u> reaction(s) identify the oxidised and reduced species.
- (i) $2HCl(aq) + Ca(OH)_2(aq) \rightarrow CaCl_2(aq) + 2H_2O(l)$ metathesis (ii) $CaCl_2(l) \rightarrow Ca(s) + Cl_2(g)$ - redox reduced oxidised
- 6. Balance the equation for the following redox reaction in **acidic solution**. Your method for balancing the equation should be clearly presented.

$2 \text{ MnO}_4(aq) + 6\text{H}^+(aq) + 5\text{ClO}_3(aq)$			$\rightarrow 2 \operatorname{Mn}^{2+}(aq) + 5 \operatorname{ClO}_{4}(aq) + 3 \operatorname{H}_{2}O(l)$				
$2[MnO_{4}(aq) 5[H_{2}O]$	+ +	$8H^+ + 5e^-$ ClO ₃ ⁻ (aq)	\rightarrow \rightarrow	Mn ²⁺ (aq) 2H ⁺	+ +	$\begin{array}{r} 4H_2O\\ClO_4^-(aq) \end{array} +$	2e ⁻
MnO ₄ (aq)	+	$\text{ClO}_3^-(\text{aq})$	\rightarrow	Mn ²⁺ (aq)	+	$ClO_4(g)$	