(07) 4042 1275

JAMES COOK UNIVERSITY

P O Box 6811 CAIRNS Qld 4870 Australia Tel: (07) 4042.1111 Fax: (07) 4042 1300

SCHOOL OF PHARMACY AND MOLECULAR SCIENCES Chemistry Department

This paper must be handed in at the end of the Examination: Yes Release to Library: No

FIFTEEN (15) MINUTES

STUDY PERIOD 1 EXAMINATIONS 2006

Cairns Campus

STUDENT NAME: (block letters)

- **STUDENT NUMBER:**
- SUBJECT CODE: CH1012:03
- SUBJECT NAME: MOLECULAR CHEMISTRY

EXAMINER: Dr Michael Liddell **PHONE NO:**

DURATION OF EXAMINATION (hours): TWO (2) HOURS

PERUSAL TIME (minutes):

TOTAL NUMBER OF QUESTIONS: 27

INSTRUCTIONS TO STUDENTS: The exam is composed of two sections: Section A - Multiple choice 22 questions - 33% Section B - Short answer 5 questions - 67% Total marks for paper = 100 Answer ALL questions. All questions are not of equal value. Timings are indicated to allow approximately 15 minutes of check-over time.

MATERIALS TO BE SUPPLIED BY EXAMINATION S	ECTION:				
Examination Booklets required:	Yes				
Multiple choice scanner sheets Scanner A- E:					
MATERIALS STUDENTS MAY USE:					
Scientific calculator with no text storage facilities.					
Access to an English Dictionary:	Yes				

SECTION A

MULTIPLE CHOICE QUESTIONS (EACH QUESTION IS WORTH 1.5 MARKS). ANSWER ALL QUESTIONS – SHADE WITH A PENCIL THE MOST CORRECT ANSWER ON THE MULTICHOICE SCANNER SHEET.

Timing: you should complete the multi-choice section in 32 minutes (≈ 1.5 minutes per question).

1. Are double bonds generally stronger or weaker than single bonds? Why?

- (a) Stronger. There is less electron density between the atoms.
- (b) Weaker. There is more electron density between the atoms.
- (c) Weaker. There is less electron density between the atoms.
- (d) Stronger. There is more electron density between the atoms.
- (e) They are both of equal strength.

2. The phenomenon used to differentiate colloids and true solutions is called the ______ effect.

- (a) van't Hoff
- (b) Tyndall
- (c) Raoult
- (d) osmotic
- (e) Henry's

3. In the following pairs, Li, Be and Li, Na, which element in each pair will have the greater **metallic character**:

- (a) Be, Li
- (b) Li, Na
- (c) Li, Li
- (d) Be, Na

4. Element X reacts with chlorine to form a compound with the formula XCl₂. The oxide of element X is basic. **Element X** is _____.

- (a) Rb
- (b) Ca
- (c) Al
- (d) P
- (e) H

5. Identify the **polydentate ligand** present and indicate the probable number of **coordination positions** it occupies in $[Ir(dppm)_2Cl_2]^+$.

- (a) dppm, 1
- (b) Cl⁻, 2
- (c) Cl₂, 2
- (d) dppm, 2

6. Identify the **specific element** that corresponds to the following electron configuration: $[Ne]3s^23p^1$

- (a) B
- (b) Al
- (c) Si
- (d) C
- (e) Ga

7. In molecular liquids, the attractive intermolecular forces are ______.

- (a) very strong compared with the intramolecular bond energies
- (b) strong enough to hold molecules relatively close together to prevent translational
- (c) motion
- (d) strong enough to keep the molecules confined to vibrating about their fixed lattice points

strong enough to hold molecules relatively close together but <u>not</u> strong enough to keep molecules from moving past each other

8. In molecular orbital theory, the bond orders in H_2 , H_2^+ , and H_2^- are _____, respectively

- (a) 1, 0, and 0
- (b) 1, ¹/₂, and 0
- (c) 1, 0, and $\frac{1}{2}$
- (d) 1, ¹/₂, and ¹/₂
- (e) 1, 2, and 0

9. What is the molecular formula of glucose?

- (a) $C_5H_8O_5$
- (b) $C_6H_{10}O_6$
- (c) $C_4H_{10}O_4$
- (d) $C_5H_{10}O_5$
- (e) $C_6H_{12}O_6$

10. For a compound to be **aromatic**, how many pi electrons must be in the p_i cloud?

- (a) more than the number of sigma electrons
- (b) an even number of pairs
- (c) an odd number of pairs
- (d) an odd number
- (e) at least 3 pairs

11. In what region of the **IR spectrum** would you find an absorption band that would distinguish between CH_3 -C(=O)-OCH₂CH₃ and CH_3 -C(=O)-CH₂CH₃?

- (a) 1600-1500 cm⁻¹
- (b) 1800-1650 cm⁻¹
- (c) $3100-2900 \text{ cm}^{-1}$
- (d) $3300-3100 \text{ cm}^{-1}$
- (e) 1420-1380 cm⁻¹

12. In which alloy is the main component copper?

- (a) stainless steel
- (b) brass
- (c) fool's gold
- (d) solder
- (e) permalloy

13. What is the IUPAC name for the following compound?

- (a) 3-methylpentanoic acid
- (b) 3-isohexanoic acid
- (c) 2-ethylbutanoic acid
- (d) 2-methylpentanoic acid
- (e) 3-ethylbutanoic acid

14. What does reduction do to a compound?

- (a) It increases the number of carbon-oxygen bonds.
- (b) It increases the number of carbon-halogen bonds.
- (c) It decreases the number of carbon-hydrogen bonds.
- (d) It increases the number of carbon-hydrogen bonds.
- (e) a and c

15. Vulcanization works because

- (a) sulphur is incorporated into the polymer backbone.
- (b) polymer chains are cross-linked by sulphide linkages.
- (c) the sulphur removes water from rubber, making it less flexible.
- (d) sulphur is attached to the polymer backbone as free thiol groups, and the resulting hydrogen bonding strengthens the polymer.
- 16. Which metal is ligated to a histidine in hemoglobin and myoglobin?
- (a) manganese
- (b) iron
- (c) magnesium
- (d) iridium
- (e) cobalt

17. What is a general molecular formula for a cyclic alkene?

- (a) C_nH_{2n}
- (b) C_nH_{2n-2}
- (c) C_nH_{2n+4}
- (d) $C_n H_{2n+2}$
- (e) C_nH_{2n+6}

18. Which of the following compounds will show an ¹H NMR spectrum with 2 doublets, a triplet, and a quartet?

- CH_3CH_2 -C(=O)-OCH₂CH₃ (a)
- (b) $CH_3CHCI-C(=O)-CH_2-CH(=O)$
- CH_3 -C(=O)- $CH_2CH_2CH_3$ (C)
- (d) $(CH_3)_2CH-C(=O)-CH_2CH_3$
- (e) $CH_3CH_2CH_2-CH(=O)$

19. How many signals would be present in the ¹³C NMR spectrum of 2-pentanone?

- 3 (a)
- (b) 6
- 4 (C)
- 5 (d) 7
- (e)

20. Which of the following compounds is chiral?

- dichloromethane (a)
- difluoromethane (b)
- chlorofluoromethane (C)
- (d) bromochlorofluoromethane
- (e) dibromodichloromethane

21. Which of the following equations is a termination step in the radical substitution reaction of methane?

- $CH_3 + CI-CI \rightarrow CH_3CI + CI$ (a)
- $CI + CH_3 \rightarrow CH_3CI$ (b)
- (C) $CI-CI + h_V(light) \rightarrow 2 CI$
- (d) \cdot CI + CH₄ \rightarrow H-CI + CH₃
- (e) $CI + H \rightarrow HCI$

22. Which statement best describes the mechanism of an S_N2 reaction?

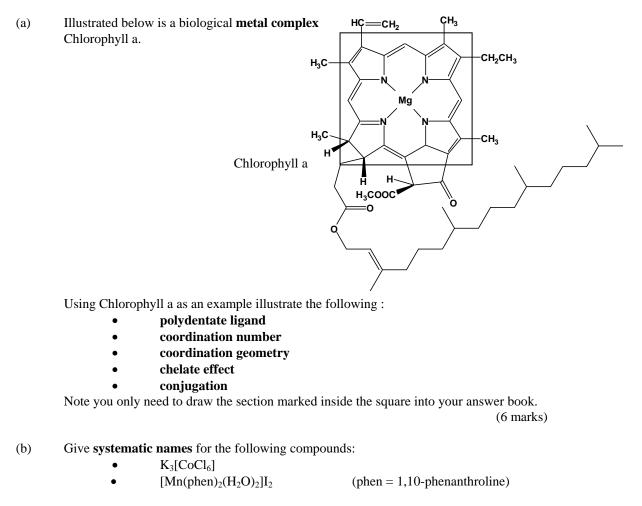
- back side attack with inversion of configuration (a)
- front side attack with inversion of configuration (b)
- front side attack with retention of configuration (C)
- back side attack with retention of configuration (d)
- front side and back side attack with racemization (e)

SECTION B

SHORT ANSWER QUESTIONS. (MARKS FOR EACH QUESTION ARE AS INDICATED) ANSWER EACH OF THE FIVE (5) QUESTIONS.

Question 1

Timing: you should complete this question in 6 minutes.


The Group 1A oxides are basic and as a result these elements are termed the Alkali Metals.

- Explain why the Group 1A oxides are basic using **two different** <u>types</u> of **oxides** to illustrate your answer.
- What is an **amphoteric oxide**? Use an example to explain your answer.
- Why is B(OH)₃ referred to as **boric acid**?

(6 marks)

Question 2

Timing: you should complete this question in 13 minutes.

Provide a molecular formula for the following complex:

sodium dicyanoargentate(III)

(4 marks)

- (c) For the following complex **identify** and **draw** illustrative examples of each the following types of isomers: coordination isomers, linkage isomers, geometric isomers, optical isomers if they are valid possibilities for the complex.
 - [Os(NH₃)₄(H₂O)SCN]Cl

(3 marks)

Question 3

(a)

Timing: you should complete this question in 14 minutes.

•

•

- Explain how the effects of **dispersion forces** are included in the **van der Waals equation**.
 - How do **dipole-dipole forces** influence the boiling points of liquids?

(3 marks)

- (b) The vapour pressure of *n*-butane is 3.41×10^5 Pa at 30° C and 8.95×10^5 Pa at 70° C.
 - Calculate ΔH_{vap} (*n*-butane) in this temperature range.
 - Provide a definition for ΔH_{vap} .

(4 marks)

- (c) Briefly **describe** the **metallurgical processes** involved in the conversion of magnetite ore (Fe₃O₄) into iron metal.
 - Why is iron metal normally transformed into **steel** and how is this process carried out?

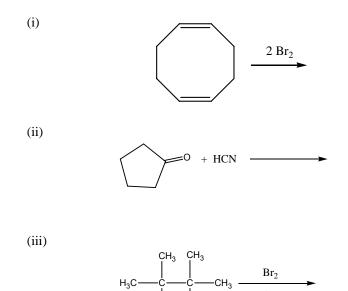
(4 marks)

- (d) (i) When quantum theory is applied to molecules it is termed **molecular orbital theory**.
 - For a single electron in the second shell of a lithium atom provide a
 - reasonable set of values for the quantum numbers that specify this electron.
 - Draw a complete **molecular orbital diagram** for the diatomic molecule Li₂
 - Is this molecule likely to be **paramagnetic**? justify your answer.
 - (ii) Discuss the following statement with respect to **Band theory** and provide examples to illustrate your answer.:
 - the size of the **band gap** is important in determining the conductivity of a solid material.

(4 marks)

Question 4

Timing: you should complete this question in 17 minutes.


(a) Identify the following unknown organic compound on the basis of the **analytical** and **spectroscopic data** provided and justify your answer.

Microanalytical results:	C 35.06%	H 6.62%	Br 58.32%
MS (m/z):	$[M]^+ 137$		
$IR (cm^{-1}):$	3000 (s)		
¹ H NMR δ (ppm):	3.21 (d, 2H),	1.95 (m, 1H), 1.02	l (d, 6H)

- Provide the **molecular formula**, **IUPAC name** and a **condensed formula** for this compound.
- Explain clearly **how you arrived at the formula** and structure using all the information provided above.
- What peaks would you expect to find in the ¹³C NMR spectrum of this compound?
- What **solvent** would you choose for running the NMR spectra?
- How could you convert this compound into the corresponding **alcohol**?

(8 marks)

(b) Predict the **major organic product(s)** from **two** of the following reactions and name the **type of reaction**. (N.B. you are <u>not required</u> to provide a mechanism)

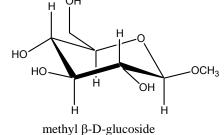
ĊH₂

(4 marks)

- (c) The chlorination of methane occurs by a **radical chain mechanism** in the presence of ultraviolet light, chloromethane is formed along with minor amounts of more highly chlorinated compounds such as dichloromethane, chloroform and carbon tetrachloride.
 - Describe in **detail the mechanism** for the formation of chloromethane.
 - Draw **3D structures** of chloroform and carbon tetrachloride.

hν

• How would you **purify the mixture** obtained when the reaction is


complete?

(4 marks)

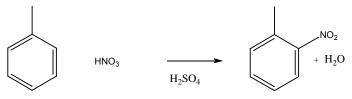
Question 5

Timing: you should complete this question in 18 minutes.

- (a) The following **monosaccharide**, methyl β-D glucoside, is referred to as a **non-reducing** sugar.
 - What is a **non-reducing sugar**?
 - What is **mutarotation**?
 - Will this sugar display mutarotation?

(4 marks)

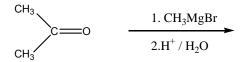
(4


- (b) The **haloalkane** (S)-3-bromoheptane, undergoes nucleophilic substitution as a characteristic reaction.
 - Provide a **detailed mechanism** for the **substitution** reaction between this reagent and

sodium hydroxide - the solvent system is aqueous methanol.

- Provide a **rate law** for this reaction.
- How would you alter the reaction conditions to bring about the formation of only the *R* optical isomer.

marks)


(c) The **nitration** of toluene shown below illustrates a typical reaction of aromatic compounds. Further nitration in this case produces the high explosive 2,4,6-trinitrotoluene (TNT).

- Provide a **detailed mechanism** for this reaction
- What is the **name of the mechanism** and the **IUPAC name** of the product?
- What is the **function of the sulphuric acid** in this reaction?
- Is the methyl group an **activating** group or a **deactivating** group and what does activating / deactivating mean with respect to this type of reaction?

(4 marks)

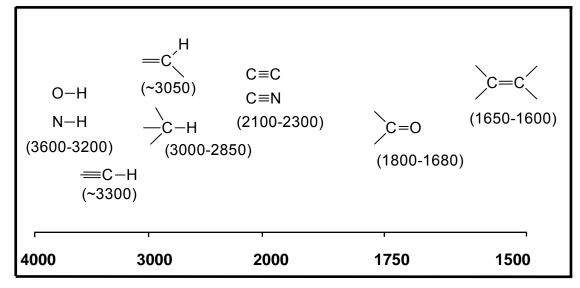
(d) The **Grignard reaction** between acetone and methylmagnesium bromide results in the formation of an alcohol.

- Provide an **IUPAC name** and draw a **skeletal structure** for the alcohol formed.
- Provide a **detailed mechanism** for the above reaction
- Is this a **nucleophilic** or an **electrophilic** reaction and is it an **addition** or a **substitution** at the carbonyl group, justify your answer.

(5 marks)

EQUATION LIST

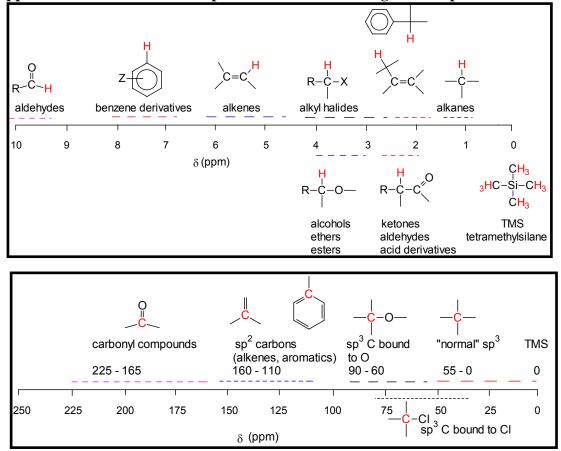
$\left(\mathbf{p} + \frac{\mathbf{n}^2 a}{\mathbf{V}^2}\right) (\mathbf{V} - \mathbf{n}b) = \mathbf{n}\mathbf{R}\mathbf{T}$	$\ln p = \frac{-\Delta H}{RT} + \text{constant}$
$\ell n \left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right) = \frac{-\Delta \mathbf{H}_{vap}}{\mathbf{R}} \left(\frac{1}{\mathbf{T}_2} - \frac{1}{\mathbf{T}_1}\right)$	$u_{rms} = \sqrt{\frac{3RT}{M}}$
$\mathbf{p}_i = \mathbf{p}_i^{\mathbf{O}} \mathbf{x}_i$	$p_{\text{Total}} = \Sigma p_i$
$[i] = \mathbf{K}_{\mathbf{H}} \mathbf{p}_i$	$\mathbf{p}_i = \mathbf{p}_T \mathbf{x}_i$
$p_i = (\%_i / 100) p_{atm}$	$\%_i = ppmv_i \ge 10^{-4}$
$K_{sp} = [cation]^{c} [anion]^{d}$	$\frac{\mathbf{m}_{O}}{\mathbf{m}_{w}} = \frac{\mathbf{p}_{O}^{o} \mathbf{M}_{O}}{\mathbf{p}_{w}^{o} \mathbf{M}_{w}}$
$\mathbf{A} = \varepsilon 1 [i]$	1 mole ideal gas = 22.41 dm^3 at STP
$\mathbf{E} = \frac{\mathbf{h} \mathbf{c}}{\lambda} = \mathbf{h} \mathbf{v}$	$h = 6.63 \text{ x } 10^{-34} \text{ J s}^{-1}$
$\frac{N_i}{N_j} = e^{-(E_i - E_j)/k_{\mathbf{B}}T}$	$k_{\rm B} = 1.38 \ {\rm x} \ 10^{-23} \ {\rm J} \ {\rm K}^{-1}$
$c = 3.00 \text{ x } 10^8 \text{ m s}^{-1}$	$T(K) = T(^{\circ}C) + 273.15$
$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$	1 atm. = $1.013 \times 10^5 \text{ Pa} = 760 \text{ torr}$


TABLE 1

Physical Quantity	Name of Unit	Symbol for Unit
Length	metre	m
Mass	kilogramme	kg
Time	second	S
Electric Current	ampere	а
Thermodynamic Temperature	kelvin	Κ
Amount of Substance	mole	mol

TABLE 2

Physical Quantity	Name of S.I. Unit	Symbol for S.I. Unit			
Volume	cubic metre	m ³			
Frequency	hertz	Hz			
Velocity	metre per second	ms ⁻¹			
Acceleration	metre per second squared	ms ⁻²			
Density	kilogramme per cubic metre	kg m ⁻³			
Molar Mass	kilogramme per mole	kg mol ⁻¹			
Concentration	mole per cubic metre	mol m ⁻³			
Molality	mole per kilogramme	mol kg ⁻¹			
Force	newton	Ν			
Pressure	pascal	Pa			
Energy	joule	J			
Electric Charge	coulomb	С			
Electron Potential Difference	volt	V			


Spectroscopy Tables

Typical Infrared (IR) frequencies of common functional groups

Wavenumber (cm⁻¹)

Carbonyl Absorptions v (cm⁻¹) Acid chlorides ~ 1790; Esters ~ 1740; Aldehydes ~ 1720; Ketones ~ 1710; Acids ~ 1700; Amides ~ 1650 Approximate ¹H NMR shifts of protons bound to C in organic compounds

Approximate ¹³C NMR shifts for groups in organic compounds

Page 14 of 14

PERIODIC TABLE CH1012:03

								-			~								
									1									18/VIII	I
								1 H										2 He	
	1	2	_					н 1.008					13/III	14/IV	15/V	16/VI	17/VII	4.003	
	3	4							_				5	6	7	8	9	10	
	2 Li	Be											В	С	N	0	F	Ne	
	6.94												10.81	12.01	14.01	16.00	19.00	20.18	
	11	12											13	14	15	16	17	18	
	3 Na	0	2	4	-	0	7	0	0	10	44	10	AI	Si	Р	S	CI	Ar	
	22.9			4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95	
σ	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
0	4 K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
·—	39.1			47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80	
еГ	37 5 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44	45	46	47 A ~	48 Cd	49	50 Sn	51 Sb	52 Ta	53	54 Xe	
۲ ۵	5 Rb 85.4			91.22	92.91	95.94	98.91	Ru 101.1	Rh	Pd 106.4	Ag 107.9	112.4	In 114.8	50 118.7		Te 127.6	126.0	ле 131.3	
	<u>65.4</u> 55	<u>/ 87.62</u> 56	00.91	72	73	95.94 74	75	76	102.9 77	78	79	80	81	82	121.8 83	84	126.9 85	86	
	6 Cs	Ba	La-	Hf	Ta	Ŵ	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
	132		Lu	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	210.0	210.0	222.0	
	87	88	, 	104	100.5	100.0	100.2	108	102.2	135.1	137.0	200.0	204.4	201.2	203.0	210.0	210.0	222.0	
	7 Fr	Ra	Ac-	Ung	Unp	Unh	Uns	Uno	Une										
	223		Lr	Ong	Onp	01111	Ono	Ono	ono										
				·\	1					1									
s block d block p block																			
			Lanthan	ides	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
						Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
						146.2	144.9	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0		
89 90 91 92 93							94	95	96	97	98	99	100	101	102	103			
			Actinide	\setminus	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				\	227.0	232.0	231.0	238.0	237.0	239.1	241.1	244.1	249.1	252.1	252.1	257.1	258.1	259.1	262.1

fblock	