

JAMES COOK UNIVERSITY

P O Box 6811 CAIRNS Qld 4870 Australia Tel: (07) 4042.1111 Fax: (07) 4042 1300

SCHOOL OF PHARMACY AND MOLECULAR SCIENCES Chemistry Department

STUDY PERIOD 1 EXAMINATIONS 2008 CAMPUS: Cairns

No of pages including front page, exam paper and any attachments: 13 This paper must be handed in at the end of the Examination: Yes Release to Library: No

STUDENT NAME: (block letters)

STUDENT NUMBER:

CH1012:03						
MOLECULAR CHEMISTRY						
EXAMINER: Dr Michael Liddell						
EXAMINER/CONTACT PERSON FOR ENQUIRIES ON DAY OF EXAM:						
IINATION (hours):	TWO (2) HOUH	TWO (2) HOURS				
ites):	FIFTEEN (15) N	FIFTEEN (15) MINUTES				
TOTAL NUMBER OF QUESTIONS:						
TUDENTS: two sections:						
ltiple choice -	22 questions - 3	3%				
t answer -	5 questions - 6	7%				
00						
All questions an	e not of equal valu	le.				
allow approximately 15 minutes of	check-over time.					
UPPLIED BY EXAMINATION	SECTION:					
wired (Yes/No) Yes						
	CH1012:03 MOLECULAR CHEMISTRY Dr Michael Liddell T PERSON FOR DF EXAM: INATION (hours): tes): QUESTIONS: TUDENTS: Two sections: Itiple choice - t answer - 00 All questions ar Ilow approximately 15 minutes of UPPLIED BY EXAMINATION wired (Yes/No)	CH1012:03 MOLECULAR CHEMISTRY Dr Michael Liddell PHONE NO: T PERSON FOR EXT. WORK: Dr Michael Lidd T PERSON FOR Dr Michael Lidd INATION (hours): TWO (2) HOUR tes): FIFTEEN (15) N QUESTIONS: 27 TUDENTS: Two sections: tiple choice - 22 questions - 3 t answer - 5 questions - 6 00 All questions are not of equal value dlow approximately 15 minutes of check-over time. UPPLIED BY EXAMINATION SECTION: wired (Yes/No) Yes				

Examination Booklets require	Yes	
Scanner Sheets required	(Yes/No)	Yes: a - e 🗵

STANDARD MATERIALS PERMITTED IN AN EXAMINATION ROOM ARE: Pencils, pens, erasers, white-out, rulers

ADDITIONAL MATERIALS STUDENTS MAY USE:

Scientific calculator with no text storage facilities.

Access to a dictionary:

•	English	Yes 🗵	or	No 🗆
•	Bilingual English translation	Yes 🖂	or	No 🗆

SECTION A

MULTIPLE CHOICE QUESTIONS (EACH QUESTION IS WORTH 1.5 MARKS). ANSWER ALL QUESTIONS – SHADE WITH A PENCIL THE MOST CORRECT ANSWER ON THE MULTICHOICE SCANNER SHEET.

Timing: you should complete the multi-choice section in 32 minutes (≈ 1.5 minutes per question).

SECTION B

SHORT ANSWER QUESTIONS. (MARKS FOR EACH QUESTION ARE AS INDICATED) ANSWER EACH OF THE FIVE (5) QUESTIONS.

Question 1

Timing: you should complete this question in 7 minutes.

- (a) The **acid/base properties** of the oxides of elements **Groups 1A** to **4A** in Period 3 vary in a systematic manner traversing from sodium to silicon.
 - Describe the **trend in the acid/base properties** using examples to illustrate your answer.
 - Illustrate why sodium peroxide is **basic** in solution.
 - What is an **amphoteric** oxide?

(6 marks)

Question 2

Timing: you should complete this question in 14 minutes.

(a) $[PdCl_2(NH_3)_2]$ is a palladium analogue of the anti-cancer drug *cis*-Platin.

- What is the **coordination number** and **geometry** at the palladium centre in $[PdCl_2(NH_3)_2]$.
- How many **ligands** and **donor atoms** does [PdCl₂(NH_{3 2}] have?
- Provide an example of a neutral **bidentate ligand** which could replace the two amine groups in [PdCl₂(NH₃)₂] and **draw the resultant complex**.

(4 marks)

- (b) Give systematic names for the following compounds:
 - [Mo(NH₃)₄(CN)Cl]I
 - Na[AgCl₂]

Provide a **molecular formula** for the following complex:

• diaquatriamminenitritocobalt(III) bromide

(4 marks)

(c) For the following complex **identify** and **draw** examples of each of the following types of isomers, if they are valid possibilities for the complex:

coordination isomers, linkage isomers, geometric isomers, optical isomers

• [Fe(NH₃)₄(H₂O)SCN]Br

(4 marks)

Question 3

Timing: you should complete this question in 21 minutes.

- (a) Why is **steam distillation** used for distilling many natural oils rather than standard **fractional distillation**? In your answer explain the characteristics of both types of distillation (3 marks)
- (b) At 30°C benzene and toluene have vapour pressures in the pure state of 119.6 torr and 36.7 torr, respectively.
 - What are the partial vapour pressures of each of these compounds and the total pressure over a solution consisting of equal weights of these two components at 30°C?
 - What is a **supercritical fluid**?

(5 marks)

(c) Briefly describe the **metallurgical processes** involved in the transformation of hematite (Fe₂O₃) into iron metal.

• Why is expensive electricity used for smelting aluminium rather than using a simple blast furnace operation such as that is used for producing pig-iron?

(4 marks)

- (d) (i) **Molecular orbital (MO) theory** is the area of quantum mechanics that is concerned with the description of the electronic structure of molecules.
 - What are the four **quantum numbers** that are required to define an individual electron in an atom.
 - Draw a complete **molecular orbital diagram** for the diatomic molecule Li₂⁺
 - Indicate on your diagram where the **HOMO** and the **LUMO** are.
 - (ii) Band theory is the extension of MO theory to solids. Use **band theory** to discuss the main differences between **p-type** and **n-type semiconductors**?

(5 marks)

Question 4

Timing: you should complete this question in 14 minutes.

(a) A colourless organic solid gave the following microanalytical results: C 59.98 % H 10.06 %

> ^{**m**} In an **IR spectrum** of the sample strong bands were found at 3510 and 1702 cm⁻¹. ^{**m**} A **EI mass spectrum** of the compound displayed a molecular ion at m/z 160. ^{**m**} ¹**H NMR** δ (CDCl₃/C: 0.75 (t, 3H), 1.2 – 1.5 (m, 8H), 1.60 (m, 2H), 3.75 (s, 1H), 4.1 (t, 1H), 10.02 (s, 1H)

^{**p**} When the ¹H NMR was re-run after the addition of a drop of D_2O the peaks at 3.75and 10.02 ppm were absent from the spectrum.

- Provide the **molecular formula**, **IUPAC name** and **condensed** structure for this compound.
- Explain clearly **how you arrived at the structure of the compound** using <u>all</u> the information provided.
- What **chemical test** could you use to help verify the identity of this compound?

(8 marks)

(b) Predict the **major organic product(s)** from **two** of the following reactions and name the **type of reaction**. (N.B. you are <u>not required</u> to provide a detailed mechanism)

(4 marks)

Question 5

Timing: you should complete this question in 23 minutes.

- (a) Describe in detail the **radical chain mechanism** for the mono-chlorination of methane in the presence of ultraviolet light.
 - How would you **separate** the multi-substituted products from the mono-substituted products?

(5 marks)

- (b) Draw the structure of (S)-2-bromobutane, indicating clearly the **S-configuration** at the stereocentre.
 - Provide a detailed mechanism for the $S_N 2$ substitution reaction between this reagent and sodium hydroxide.
 - What does $S_N 2$ mean?

(5 marks)

(c) The chlorination of benzene shown below illustrates a typical reaction of **aromatic compounds** with **electrophilic reagents.**

- Provide a **detailed mechanism** for this reaction.
- Explain in detail why **substitution** occurs rather than **addition**.
- What is the function of the FeCl₃ in the reaction?

(5 marks)

(d) The **Grignard reaction** is a particularly useful tool for synthetic organic chemists. The reaction between benzaldehyde and methylmagnesium chloride proceeds as below.

- Provide a **detailed mechanism** for the above reaction
- What **solvent** would you use for step 1 in the reaction justify your answer?

(5 marks)

EQUATION LIST

$\left(p + \frac{n^2 a}{V^2}\right) (V - nb) = nRT$	$\ln p = \frac{-\Delta H}{RT} + \text{constant}$
$\ell n \left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right) = \frac{-\Delta \mathbf{H}_{vap}}{\mathbf{R}} \left(\frac{1}{\mathbf{T}_2} - \frac{1}{\mathbf{T}_1}\right)$	$u_{rms} = \sqrt{\frac{3RT}{M}}$
$\mathbf{p}_i = \mathbf{p}_i^{\mathbf{O}} \mathbf{x}_i$	$p_{Total} = \Sigma p_i$
$[i] = K_{\rm H} \mathbf{p}_i$	$\mathbf{p}_i = \mathbf{p}_T \mathbf{x}_i$
$p_i = (\%_i / 100) p_{atm}$	$\%_i = ppmv_i \ge 10^{-4}$
$K_{sp} = [cation]^{c}[anion]^{d}$	$\frac{\mathbf{m}_{\mathrm{O}}}{\mathbf{m}_{\mathrm{w}}} = \frac{\mathbf{p}_{\mathrm{O}}^{\mathrm{o}} \mathbf{M}_{\mathrm{O}}}{\mathbf{p}_{\mathrm{w}}^{\mathrm{o}} \mathbf{M}_{\mathrm{w}}}$
$\mathbf{A} = \varepsilon 1 [\mathbf{i}]$	1 mole ideal gas = 22.41 dm^3 at STP
$\mathbf{E} = \frac{\mathbf{h}\mathbf{c}}{\lambda} = \mathbf{h}\boldsymbol{\nu}$	$h = 6.63 \text{ x } 10^{-34} \text{ J s}^{-1}$
$\frac{N_i}{N_j} = e^{-(E_i - E_j)/k_{\mathrm{B}}T}$	$k_{\rm B} = 1.38 \ {\rm x} \ 10^{-23} \ {\rm J} \ {\rm K}^{-1}$
$c = 3.00 \text{ x } 10^8 \text{ m s}^{-1}$	$T(K) = T(^{\circ}C) + 273.15$
$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$	1 atm. = 1.013×10^5 Pa = 760 torr

TABLE 1

Physical Quantity	Name of Unit	Symbol for Unit
Length	metre	m
Mass	kilogram	kg
Time	second	S
Electric Current	Ampere	а
Thermodynamic Temperature	Kelvin	K
Amount of Substance	mole	mol

TABLE 2

Physical Quantity	Name of S.I. Unit	Symbol for S.I. Unit
Volume	cubic metre	m^3
Frequency	Hertz	Hz
Velocity	metre per second	m s ⁻¹
Acceleration	metre per second squared	$m s^{-2}$
Density	kilogram per cubic metre	kg m ⁻³
Molar Mass	kilogram per mole	kg mol ⁻¹
Concentration	mole per cubic metre	mol m ⁻³
Molality	mole per kilogram	mol kg ⁻¹
Force	Newton	Ν
Pressure	Pascal	Ра
Energy	Joule	J
Electric Charge	Coulomb	С
Electron Potential Difference	Volt	V

Spectroscopy Tables

Typical Infrared (IR) frequencies of common functional groups

Wavenumber (cm⁻¹)

Carbonyl Absorptions v (cm⁻¹) Acid chlorides ~ 1790; Esters ~ 1740; Aldehydes ~ 1720; Ketones ~ 1710; Acids ~ 1700; Amides ~ 1650

Approximate ¹H NMR shifts of protons bound to C in organic compounds

Approximate ¹³C NMR shifts for groups in organic compounds

Page 6 of 6 PERIODIC TABLE CH1012:03

		1	2																18/VIII	
																			2]
		Н -													4.4/0./	450/	400//	470/11	+ He '	
		1.008		_										13/11	14/IV	15/V	16/VI	17/VII	4.003	
	ļ	3	4	1										5	6	7	8	9	10	
	2	Li '	Be	1										В	С	Ν	0	F	Ne	
	ļ	6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18	
	ļ	11	12	1										13	14	15	16	17	18	
	3	Na	Mg	1										AI	Si	Р	S	CI	Ar	
	ļ	22.99	24.30	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95	
	ļ	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
q	4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
<u>.</u>	ļ	39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80	
<u> </u>	ļ	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
θ	5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe	
	ļ	85.47	87.62	88.91	91.22	92.91	95.94	98.91	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3	
	ļ	55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	6	Cs	Ba	La-	Hf	Та	W	Re	Os	l Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
	ļ	132.9	137.3	LU	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	210.0	210.0	222.0	
	I	87	88	A a	104	105	106	107	108	109					· · · · · ·					
	7	Fr	Ra	AC-	Unq	Unp	Unh	Uns	Uno	Une										
	ļ	223.0	226.0			<u>ا ا</u>	1'	1'	<u>ا ا</u>	1'	1									
	-			<u> </u>	$\overline{\}$															
		S DIOC	,κ		ЗK									p block						
				\backslash	\	<u>\</u>	<u>. </u>	<u>. </u>	<u>.</u>	<u>. </u>		<u>. </u>	<u>.</u>	<u> </u>	<u>.</u>	<u>.</u>		<u>.</u>	<u>. </u>	-
			L	anthani	des	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
					···· ·	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	\backslash				_ \ _ '	138.9	140.1	140.9	146.2	144.9	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
					$\langle \rangle$	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			A	Actinide	\ _'	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				$\langle \cdot \rangle$	227.0	232.0	231.0	238.0	237.0	239.1	241.1	244.1	249.1	252.1	252.1	257.1	258.1	259.1	262.1	
					Г	fblock														
						1 DIOOK														