

JAMES COOK UNIVERSITY

P O Box 6811 CAIRNS Qld 4870 Australia Tel: (07) 4042.1111 Fax: (07) 4042 1300

SCHOOL OF PHARMACY AND MOLECULAR SCIENCES Chemistry Department

STUDY PERIOD 1 EXAMINATIONS 2007 CAMPUS: Cairns

No of pages including front page, exam paper and any attachments: 13 This paper must be handed in at the end of the Examination: Yes Release to Library: No

STUDENT NAME: (block letters)

STUDENT NUMBER:

SUBJECT CODE:	CH1012:03		
SUBJECT NAME:	MOLECULAR CHEMISTRY		
EXAMINER:	Dr Michael Liddell	PHONE NO:	(07) 4042 1275
EXAMINER/CONTAC ENQUIRIES ON DAY		EXT. WORK: Dr Michael Lide	
DURATION OF EXAM	IINATION (hours):	TWO (2) HOUI	RS
PERUSAL TIME (minu	ites):	FIFTEEN (15)	MINUTES
TOTAL NUMBER OF	QUESTIONS:	27	
INSTRUCTIONS TO S The exam is composed of			
Section A - Mu		22 questions - 3	3%
Section B - Sho	-	5 questions - 6	
Total marks for paper $= 1$	00	1	
Answer ALL questions.	All questions	are not of equal value	ue.
Timings are indicated to	allow approximately 15 minutes of	of check-over time.	
MATERIALS TO BE S	UPPLIED BY EXAMINATION	SECTION.	
Examination Booklets rea			

Examination Booklets required	(Yes/No)	Yes
Scanner Sheets required	(Yes/No)	Yes: a - e 🗵

STANDARD MATERIALS PERMITTED IN AN EXAMINATION ROOM ARE: Pencils, pens, erasers, white-out, rulers

ADDITIONAL MATERIALS STUDENTS MAY USE:

Scientific calculator with no text storage facilities.

Access to a dictionary:

٠	English	Yes 🗵	or	No 🗆
٠	Bilingual English translation	Yes 🖂	or	No 🗆

SECTION A

MULTIPLE CHOICE QUESTIONS (EACH QUESTION IS WORTH 1.5 MARKS). ANSWER ALL QUESTIONS – SHADE WITH A PENCIL THE MOST CORRECT ANSWER ON THE MULTICHOICE SCANNER SHEET.

Timing: you should complete the multi-choice section in 32 minutes (≈ 1.5 minutes per question).

SECTION B

SHORT ANSWER QUESTIONS. (MARKS FOR EACH QUESTION ARE AS INDICATED) ANSWER EACH OF THE FIVE (5) QUESTIONS.

Question 1

Timing: you should complete this question in 6 minutes.

The arrangement of the periodic table allows for clear trends in physical properties and chemical reactivity to be discerned as we move from the left-hand side to the right-hand side of a period.

- Explain the trend in atomic size on going across **Period 3**.
- Illustrate how the acid-base properties of the **metal oxides** vary on going across **Period 3** from Group IA to VIA and provide a justification for the trends observed.

(6 marks)

Question 2

Timing: you should complete this question in 13 minutes.

(a) Werner developed the concept of coordination compounds studying cobalt compounds such as

 $[Co(NH_3)_5Br]Cl_2$. Using $[Co(NH_3)_5Br]Cl_2$ as an example define the terms **oxidation state** and **coordination number** as it applies to the cobalt ion in this coordination complex.

- Draw (in 3D perspective) a **coordination-sphere isomer** of the above complex.
- Propose a related complex (same metal and charge on the complex as $[Co(NH_3)_5Cl]Cl_2$) that contains a **bidentate ligand**.
- What is a **chelate ring**?

(4 marks) (5) Give systematic names for the following compounds:

- [Mo(NH₃)₄(CN)Cl]Br
- $K_2[FeF_4]$

Provide a **molecular formula** for the following complex:

sodium hexacyanomanganate(II)

(4 marks)

- (c) For the following complex **identify** and **draw** illustrative examples of each the following types of isomers: coordination-sphere isomers, linkage isomers, geometric isomers, optical isomers if they are valid possibilities for the complex.
 - [Ni(NH₃)₂Br(OH)]
 - Provide **systematic names** for the isomers.
 - Provide an electronic **configuration** for nickel.

(4 marks)

Question 3

Timing: you should complete this question in 16 minutes.

- (a) Real gases behave somewhat differently to ideal gases under conditions of high pressure and low temperature and many have an appreciable solubility in water.
 - The **van der Waals forces** are responsible for the deviations from ideality, list these forces and explain their significance with respect to the **van der Waals equation**. (3 marks)

(b) Careful control of physical conditions, in particular pressure, will generally determine if a pure

solid in a closed system will boil or sublime as the temperature is increased.

- Calculate the temperature at which *n*-butanol will boil at a pressure of 2600 Pa, if the normal boiling point is 118° C. Δ H_{vap} (*n*-butanol) = 44.5 kJ mol⁻¹.
- Draw a **phase diagram for H_2O** and use it to illustrate how the process of **freeze drying** occurs.

(5 marks)

- (c) Describe the **metallurgical processes** involved in the conversion of bauxite ore which is mined at Weipa into **aluminium** metal which is smelted at Gladstone.
 - Why is electricity used for smelting aluminium rather than using a simple blast furnace such as that used for producing pig-iron?

(4 marks)

- (d) (i) **Molecular orbital (MO) theory** is the area of quantum mechanics that is concerned with the description of the electronic structure of molecules.
 - For a single electron in the second shell of an oxygen atom provide a **reasonable set of values** for the quantum numbers that specify this electron.
 - Draw a complete **molecular orbital diagram** for the diatomic molecule O₂
 - Is this molecule likely to be **paramagnetic**? justify your answer.
 - (ii) Extension of MO theory to solids results in band theory. Use **band theory** to discuss the main differences between **intrinsic** and **extrinsic semiconductors**?

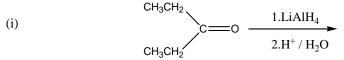
(4 marks)

Question 4

Timing: you should complete this question in 16 minutes.

(a) Identify the following unknown organic compound on the basis of the **analytical** and **spectroscopic data** provided and justify your answer.

Microanalytical results:	C 54.50%	H 9.17%	O 36.33%	
MS (m/z):	$[M]^+ 88$			
IR (cm^{-1}) :	2910 (s), 1725	(s)		
¹ H NMR δ (ppm):	10.05 (t, 1H),	4.13 (d, 2H),	3.66 (q, 2H),	1.27 (t, 3H)
¹³ C NMR δ (ppm):	185.2, 82.2,	76.0, 18.3		


• Provide the **molecular formula**, **IUPAC name** and a **structural formula** for this compound.

• Explain clearly **how you arrived at the formulae** using <u>all</u> the information provided.

- What internal reference compound would you choose for the NMR spectra?
- What **chemical test** could you use to verify the identity of this compound?

(8 marks)

(b) Predict the **major organic product**(s) from **two** of the following reactions and name the **type of reaction**. (N.B. you are <u>not required</u> to provide a detailed mechanism)

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

(iii)
$$CH_3CH_2CH_2 \longrightarrow OH + ZnCl_2 \xrightarrow{conc. HCl} reflux$$

(4 marks)

(c) The bromination of propane occurs by a **radical chain mechanism** in the presence of ultraviolet light. In the equation below only the major product is shown.

- Describe in **detail the mechanism** for the formation of this major organic product.
- What would be the other product formed and why is it a minor product?

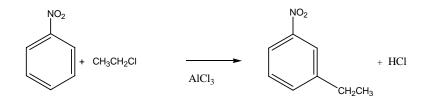
$$\begin{array}{c} \mathsf{CH}_3 \\ \searrow \\ \mathsf{CH}_2 & -\mathsf{CH}_3 \end{array} + \mathsf{Br}_2 \xrightarrow{hv} \qquad \qquad \begin{array}{c} \mathsf{CH}_3 \\ \searrow \\ \mathsf{BrCH} & -\mathsf{CH}_3 \end{array} + \mathsf{HBr} \end{array}$$

(4 marks)

(ii)

CH1012:03

Question 5


Timing: you should complete this question in 18 minutes.

(a) In solution simple monosaccharides such as glucose exist predominantly in their cyclised forms.

- Draw a **Haworth projection** of α -D-glucopyranose.
- What do the labels α-, **D** and **pyranose** mean.
- Why is this a **hemiacetal** rather than an **acetal** sugar?
- (b) Draw the structure of (R)-3-chloro-3-methylhexane.
 - Provide a **detailed mechanism** for the $S_N 1$ substitution reaction between this reagent and sodium methoxide (NaOCH₃).
 - Provide a **rate law** for this reaction.
 - What is a **racemic mixture** and why does it form in this reaction?

(4 marks)

(c) The **Friedyl Crafts alkylation** shown below illustrates a typical reaction of aromatic compounds with electrophilic reagents.

- Provide a **detailed mechanism** for this reaction
- What is the function of the **aluminum trichloride** in the reaction?
- Explain why **substitution** occurs primarily at the **meta** position rather than at the ortho / para positions.

(4 marks)

(d) The **Grignard reaction** between carbon dioxide and ethylmagnesium chloride proceeds as shown below.

 $\begin{array}{ccc} \text{CO}_2 &+ \text{CH}_3\text{CH}_2\text{MgCl} & \longrightarrow & \text{CH}_3\text{CH}_2\text{C}(=\!\text{O})\text{OH} \\ & \text{H}^+ \,/\,\text{H}_2\text{O} \end{array}$

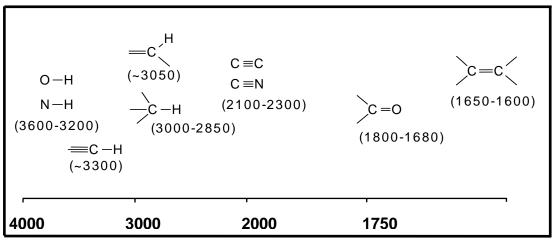
- Provide a **detailed mechanism** for the above reaction
- Provide an **IUPAC name** for the product formed.
- Is this a **nucleophilic** or an **electrophilic** reaction and is it an **addition** or a **substitution** at the carbonyl group, justify your answer.

(5 marks)

(4 marks)

EQUATION LIST

$\left(p + \frac{n^2 a}{V^2}\right) (V - nb) = nRT$	$\ln p = \frac{-\Delta H}{RT} + \text{constant}$
$\ell n \left(\frac{\mathbf{p}_2}{\mathbf{p}_1}\right) = \frac{-\Delta \mathbf{H}_{vap}}{\mathbf{R}} \left(\frac{1}{\mathbf{T}_2} - \frac{1}{\mathbf{T}_1}\right)$	$u_{rms} = \sqrt{\frac{3RT}{M}}$
$\mathbf{p}_i = \mathbf{p}_i^{\mathbf{O}} \mathbf{x}_i$	$p_{Total} = \Sigma p_i$
$[i] = K_H p_i$	$\mathbf{p}_i = \mathbf{p}_T \mathbf{x}_i$
$p_i = (\%_i / 100) p_{atm}$	$\%_i = ppmv_i \ge 10^{-4}$
$K_{sp} = [cation]^{c}[anion]^{d}$	$\frac{\mathbf{m}_{\mathrm{O}}}{\mathbf{m}_{\mathrm{w}}} = \frac{\mathbf{p}_{\mathrm{O}}^{\mathrm{o}} \mathbf{M}_{\mathrm{O}}}{\mathbf{p}_{\mathrm{w}}^{\mathrm{o}} \mathbf{M}_{\mathrm{w}}}$
$\mathbf{A} = \varepsilon 1 [i]$	1 mole ideal gas = 22.41 dm^3 at STP
$\mathbf{E} = \frac{\mathbf{h} \mathbf{c}}{\lambda} = \mathbf{h} \mathbf{v}$	$h = 6.63 \text{ x } 10^{-34} \text{ J s}^{-1}$
$\frac{N_i}{N_j} = e^{-(E_i - E_j)/k_{\rm B}T}$	$k_B = 1.38 \ x \ 10^{-23} \ J \ K^{-1}$
$c = 3.00 \text{ x } 10^8 \text{ m s}^{-1}$	$T(K) = T(^{\circ}C) + 273.15$
$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$	1 atm. = $1.013 \times 10^5 \text{ Pa} = 760 \text{ torr}$

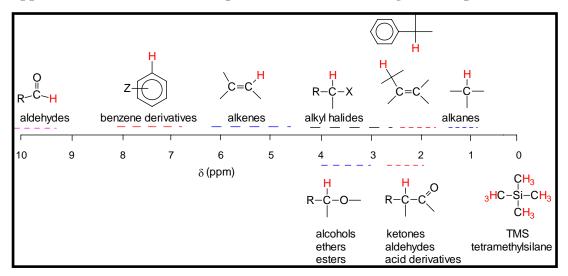

TABLE 1

Physical Quantity	Name of Unit	Symbol for Unit
Length	metre	m
Mass	kilogramme	kg
Time	second	S
Electric Current	ampere	a
Thermodynamic Temperature	kelvin	Κ
Amount of Substance	mole	mol

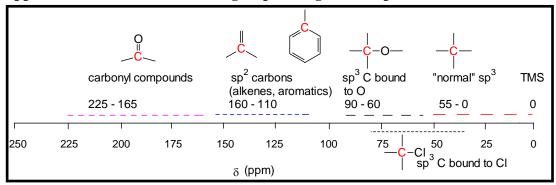
TABLE 2

Physical Quantity	Name of S.I. Unit	Symbol for S.I. Unit
Volume	cubic metre	m ³
Frequency	hertz	Hz
Velocity	metre per second	ms ⁻¹
Acceleration	metre per second squared	ms ⁻²
Density	kilogramme per cubic metre	kg m ⁻³
Molar Mass	kilogramme per mole	kg mol ⁻¹
Concentration	mole per cubic metre	mol m ⁻³
Molality	mole per kilogramme	mol kg ⁻¹
Force	newton	Ν
Pressure	pascal	Pa
Energy	joule	J
Electric Charge	coulomb	С
Electron Potential Difference	volt	V

Spectroscopy Tables



Typical Infrared (IR) frequencies of common functional groups


Wavenumber (cm⁻¹)

Carbonyl Absorptions v (cm⁻¹) Acid chlorides ~ 1790; Esters ~ 1740; Aldehydes ~ 1720; Ketones ~ 1710; Acids ~ 1700; Amides ~ 1650

Approximate ¹H NMR shifts of protons bound to C in organic compounds

Approximate ¹³C NMR shifts for groups in organic compounds

CH1012:03

Page 13 of 13

PERIODIC TABLE CH1012:03

									Ŭ			0								
										1									18/VIII	l
									1										2	
	_	1	2	_					H 1.008					13/III	14/IV	15/V	16/VI	17/VII	He 4.003	
		3	4							-				5	6	7	8	9	10	
	2	Li	Be											В	С	N	0	F	Ne	
		6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18	
		11	12											13	14	15	16	17	18	
	3	Na	Mg	-		_	-	_	-	-				AI	Si	Р	S	CI	Ar	
		22.99	24.30	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95	
		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
ро	4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
		39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80	
		37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
Ъ	5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe	
ш.		85.47	87.62	88.91	91.22	92.91	95.94	98.91	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3	
	•	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	6	Cs	Ва	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
		132.9	137.3	Lu	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	210.0	210.0	222.0	
	-	87	88	Ac-	104	105	106	107	108	109										
	7	Fr	Ra	Lr	Unq	Unp	Unh	Uns	Uno	Une										
	l	223.0	226.0	-	l,															
			```	\																
	s block d block p block																			
			L	anthani	des	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			_			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
					$\backslash$	138.9	140.1	140.9	146.2	144.9	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0
						89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			A	Actinide	$\setminus$	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
						227.0	232.0	231.0	238.0	237.0	239.1	241.1	244.1	249.1	252.1	252.1	257.1	258.1	259.1	262.1

fblook	
f block	