CH1011 Tutorial 6

Name:

1. Explain the term **standard enthalpy of formation**. Illustrate your answer using $\Delta H^o_{f}(_{CH4(g)})$ as an example (ie write the balanced equation).

2. Calculate the heat of combustion $\Delta H^o_{cl}(CH4(g))$ when methane is combusted to form $CO_2(g)$ and $H_2O(l)$.

 $3.\,0.045$ mol of $COCl_2$ gas (phosgene) is placed in a reaction vessel at $500^{\circ}C$. The total pressure in the vessel is 0.60 atm. and the partial pressures of CO and Cl_2 are 0.10 atm. and 0.20 atm., respectively. Write down the expression for K_p and determine the value of K_p in the above system.

Additional information:

 $\Delta H^{o}_{f}(_{CH4(g)})$ -75 kJ/mol

 $\Delta H^{o}_{f}(_{CO2(g)})$ -394 kJ/mol $\Delta H^{o}_{f}(_{H2O(l)})$ -286 kJ/mol

4. $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$

In an equilibrium reaction mixture of the above reaction how would $p(H_2)$ and K_p change if the temperature of the reaction vessel were raised? Explain your answer.

5. Define the term **free energy** of a substance. How is the change in free energy important in a chemical reaction?

6. The combustion of graphite (carbon) forms carbon dioxide. Write a **balanced equation** and **calculate K^o** for this reaction at 25°C.

Additional information:

 $\Delta G^{\rm o}_{\rm \ f}(\ _{\rm CO2(g)}$) -386.2 kJ/mol R = 8.31 J/mol K