CH1011 Tutorial 5

Name:

1. The variation in initial rate of reaction of nitrogen dioxide with fluorine is given in the following table. What is the overall order of the reaction? Write out a **general rate law** for this reaction.

Experiment	Initial [NO ₂]	Initial [F ₂]	Initial rate
1	0.10	0.10	0.005
2	0.20	0.10	0.010
3	0.10	0.20	0.010

2. Dinitrogen pentoxide (N_2O_5) decomposes by a uni-molecular **first order process**. If the rate constant is $5.00 \times 10^{-4} \, \text{s}^{-1}$ how long will it take (s) for an initial concentration of N_2O_5 of $0.0400 \, \text{mol dm}^{-3}$ to fall to a value of $0.0200 \, \text{mol dm}^{-3}$?

3. What is the difference between a **heterogeneous** and a **homogeneous** catalyst? Give an example of a catalyst and explain why it is used.

4. Using the nuclide ²³²₉₀Th illustrate the processes of **alpha decay** and with the nuclide ¹⁴C the process of **beta decay**.

5.	Enzymes function as biological catalysts. Describe the function of a typical enzyme including the enzyme-substrate complex, active site, turnover rate.
6.	Stable isotope measurements are used in many areas of the biological and earth sciences. Explain the difference between kinetic fractionation and equilibrium fraction as it applies to stable isotope ratios. Illustrate your answer using $\delta^{18}O$ ratios