CH1011 Tutorial 2

Name:

1.	Draw a Lewis dot str chlorofluorocarbon C			ory to predict the nolecule be polar			the
2.	Give the electronic co	nfiguration for	chlorine.				
3.	How does the first ion	ization energy	vary as move	e down the group	2 elemen	ts? Explain the	e trend
4.	What type of bonding	would you exp	ect to find in	the compound N	∕Ig(OH)₂?	Justify your an	swer.
5.	Identify the following CH ₃ C(=O)OH,	g materials as be MgC	-	nic or covalent : NF ₃ ,		LiF	

6. The first step in the reduction of a nickel sulphide ore (Ni₃S₂) to form nickel metal is roasting in air. Balance the following equation and determine how many kg of nickel oxide (NiO) can be formed from 20.0 kg of Ni₃S₂ and 10 m³ of compressed air (which contains 5.0 kg of oxygen) upon roasting (note the sulphur ends up as sulphur dioxide).

- 7. When lead nitrate solution { Pb(NO₃)₂ } is reacted with sodium iodide solution a precipitate of lead iodide is generated. The reaction goes to completion so this reaction may be used as the basis of a quantitative method for working out the concentration of lead nitrate solutions if a standard sodium iodide solution is available. In such a standardisation experiment 500mL of 0.502M sodium iodide solution was reacted with 70.0mL of lead nitrate to generate 1.256g of lead iodide.
 - ▶ Write down the balanced equation.
 - ▶ What is the concentration of the lead nitrate solution in mol/L?
 - \blacktriangleright What is the concentration of the lead nitrate solution in ppm (hint: 1ppm = 1mg/L)?
 - ▶ Would all the sodium iodide have reacted? Justify your answer.

Additional information:

 Cl_{17}^{35} Atomic weights: Ni 59, S 32 O 16.