

JAMES COOK UNIVERSITY

P O Box 6811 CAIRNS Qld 4870 Australia Tel: (07) 4042.1275 Fax: (07) 4042 1284

SCHOOL OF PHARMACY AND MOLECULAR SCIENCES Chemistry Department

This paper must be handed in at the end of the Examination: Yes Release to Library: No

SECOND SEMESTER EXAMINATIONS 2005

Cairns Campus

STUDENT NAME: (block letters)

STUDENT NUMBER:

SUBJECT CODE: CH1011:03

SUBJECT NAME: CHEMISTRY FOR THE NATURAL SCIENCES

EXAMINER:	Dr M. Liddell		PHONE NO:	(07) 4042 1275							
DURATION OF EX	AMINATION (hou	rs):	s): TWO (2) HOURS								
PERUSAL TIME (m	inutes):		FIFTEEN (15) MINUTE	ES							
TOTAL NUMBER (OF QUESTIONS:	27									
INSTRUCTIONS TO The exam is composed Section A -	D STUDENTS: d of two sections: Multiple choice -	22 ques	stions - 33%								

Yes

Section B - Short answer-5 questions-67%Total marks for paper = 100Answer ALL questions.All questions are not of equal value.Timings are indicated to allow approximately 15 minutes of check-over time.

MATERIALS TO BE SUPPLIED BY EXAMINATION SECTION:Examination Booklets required:YesMultiple choice scanner sheets Scanner A- E:Yes

MATERIALS STUDENTS MAY USE: Scientific calculator with no text storage facilities. Access to an English Dictionary:

SECTION A

MULTIPLE CHOICE QUESTIONS (EACH QUESTION IS WORTH 1.5 MARKS). ANSWER ALL QUESTIONS – SHADE WITH A PENCIL THE MOST CORRECT ANSWER ON THE MULTICHOICE SCANNER SHEET.

Timing: you should complete the multi-choice section in 30 minutes (≈ 1.5 minutes per question).

This section has been deleted it is just multi-choice of the same calibre as the modules.

SECTION B

.

SHORT ANSWER QUESTIONS. (MARKS FOR EACH QUESTION ARE AS INDICATED) ANSWER EACH OF THE FIVE (5) QUESTIONS.

Question 1

Timing: you should complete this question in 16 minutes.

- (a) (i) Solid materials have different bonding characteristics and physical properties.
 - Provide an **example** of and **define** a *covalent molecular solid*.
 - Will this material **conduct electricity** in the solid state? Explain your decision.
 - (ii) Clearly define an **intramolecular hydrogen bond** using the following tripeptide to illustrate your answer.
 - Is this molecule likely to be **water soluble**? Explain your answer with respect to the hydrogen bonding ability of water.

(b)

(i) Provide **systematic names** for the following compounds:

- TiBr₃
- H_3PO_4
- (ii) Provide **formulae** for the following compounds:
 - ferric iodide
 - potassium chloride

(4 marks)

(c) (i) Provide **electronic configurations** for the following elements:

- a period 4 metal which is commonly used in electrical wires.
- an alkaline earth metal which is a common constituent of limestone.
- (ii) What is a pure **isotope**? Provide an example to support your answer.

(3 marks)

(d) Define the term **first ionisation energy**?

• How does this property vary across and down the periodic table? Explain these trends.

(3 marks)

Question 2

Timing: you should complete this question in 16 minutes.

(4 marks)

- (c) The chemically inert gas **radon** is formed in granitic rocks according to the following scheme. $^{226}Ra \rightarrow ^{222}Rn$
 - What is the name of the element ²²⁶Ra and where does this element come from (ie. what decay path is this element on)?
 - The process above involves **α-decay**. Complete the scheme above to illustrate the process of α-decay making sure that conservation of mass number and atomic number are clearly demonstrated.

(4 marks)

Question 4

Timing: you should complete this question in 17 minutes.

(a)	(i)	Calculate the NH be	Calculate the NH bond energy in ammonia using the following data :									
		Data: ΔH^{o}_{f} :	$NH_3(aq) - 80.3 \text{ kJ mol}^{-1};$	$NH_3(g) - 45.9 \text{ kJ mol}^{-1}$								
			$N_2(g) 0 kJ mol^{-1}$	$H_2(g) 0 \text{ kJ mol}^{-1}$								
			N(g) 473.0 kJ mol ⁻¹ ;	H(g) 218.0 kJ mol ⁻¹								

(ii) Predict whether **entropy** increases or decreases in the following reactions and explain why.

 $\begin{array}{cccc} H_2O_{(l)} & \\ NaBr_{(s)} & \longrightarrow & Na^+_{(aq)} + & Br^-_{(aq)} \\ Cl_{2(g)} & + & O_{2(g)} & \longrightarrow & Cl_2O_{2(s)} \end{array}$

(5 marks)

(b) The cell voltage (emf) of the following voltaic cell at 298K is +0.030V.

Cu _(s)	CuSO _{4(aq)}	KCl _(aq)	AgCl _(s)	Ag _(s)
		0.100M		

- What is the **cell reaction**?
- Calculate the **standard free energy change** ΔG° for the cell reaction.

• Calculate the concentration of CuSO_{4(aq)} in the cell using the data provided.

Data:

(5 marks)

(c) Calculate the **pH** of the following aqueous solution:
• 1.00 M hydrogen cyanide
$$K_A(HCN) = 4.80 \times 10^{-10}$$
 (5 marks)

Question 5

.

Timing: you should complete this question in 14 minutes.

- (a) Sketch a profile for the atmosphere up to 100km illustrating changes in temperature and pressure for each region. Indicate clearly the names of each region and the names of the transition regions.
 - What are the **major gases** (include % composition) in the atmosphere at sea level?
 - Why is the **stratosphere** referred to by this name?

(4 marks)

(b) Make a sketch of the **carbon biogeochemical cycle** and on your sketch:

- Indicate the relative ordering of the **main reservoirs**.
- Indicate the **main chemicals** involved (molecular formulae) and the **direction of fluxes**.
- Define the term **flux**.
- What is **methane hydrate** and how may it impact on this cycle in the future.

(4 marks)

(c) In a large city such as Sydney **water treatment** plants have a number of stages that are used to ensure that the water which arrives with the consumer is fit for consumption.

- Sketch the typical features of a **water treatment plant** indicating the various stages and indicate which water quality parameter(s) are modified at each stage.
- What is **reverse-osmosis** and what are the advantages and disadvantages in using this to supply drinking water?

(4 marks)

EQUATION LIST

$$\begin{pmatrix} p + \frac{n^2 a}{V^2} \end{pmatrix} (V - nb) = nRT \qquad \sqrt{u^2} = \sqrt{\frac{3RT}{M}}$$

$$p_i = p_i^0 x_i \qquad p_i = p_T x_i$$

$$z = \sigma \quad \overline{u}_{ed} N \qquad \lambda = \frac{\overline{u}}{\overline{z}}$$

$$AG^o = -RT \ell nK \qquad K = K_p (p^o)^{\Delta n}$$

$$\ell nK = \frac{-\Delta H^o}{RT} + \frac{\Delta S^o}{R} \qquad \ell n \frac{K_2}{K_1} = \frac{-\Delta H^o}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$\ell n[A_o] - \ell n[A] = kt \qquad k = Ae^{4\pi/RT}$$

$$\ell n \frac{k_2}{K_1} = \frac{-Ea}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \qquad t_{m-trin} = ln(m) / k$$
For the cell reaction $aA + bB \rightarrow cC + dD \qquad E_{cell} = E^o cell - \frac{RT}{nF} ln \left(\frac{[C]^e [D]^d}{[A]^o [B]^o}\right)$

$$F^o_{cell} = E^o_{cende} * E^o_{anode} \qquad AG = -n F E_{cell}$$

$$p_{road} = \Sigma p_i \qquad [i^1] = K_H p_i$$

$$p_{rel} (M_i - 100) p_{am} \qquad M_i = promv_i \times 10^{-4}$$

$$R.H_i = \frac{p(H_2O)}{p(H_2O)sat} \times 100 \% \qquad Flux = A / \tau$$

$$A_a = x_i p^a_{stortand}$$

$$\Delta T = K m_i$$

$$\delta = \left(\frac{R_{stortand}}{R_{stortand}}\right) \times 10^3 \%_o \qquad 10^3 \ln \alpha \approx \frac{A}{T^2} + B = \delta_A - \delta_B$$

$$R = 8.314 J mol^{-1} K^{-1} = 8.314 Pa m^3 mol^{-1} K^{-1} \qquad 1 atm. = 1.013 \times 10^5 Pa = 760 torr$$

$$T(K) = Ti^o C + 273.15 \qquad F = 9.65 \times 10^d C mol^{-1}$$

TABLE 1

$CaCO_3 + 2H^+$	\rightarrow Ca ²⁺ + CO ₂ + H ₂ O
$CaCO_3 + H_2SO_4 + H_2O$	\rightarrow CaSO ₄ .2H ₂ O + CO ₂
$4\text{FeS}_2 + 15\text{O}_2 + 14\text{H}_2\text{O}$	\rightarrow 4Fe(OH) ₃ + 8H ₂ SO ₄
$2SO_2 + 2H_2O + O_2$	$\rightarrow 2H_2SO_4$ (Mn cat.)

TABLE 2

Physical Quantity	Name of Unit	Symbol for Unit
Length	metre	m
Mass	kilogramme	kg
Time	second	S
Electric Current	ampere	а
Thermodynamic Temperature	kelvin	K
Amount of Substance	mole	mol
Volume	cubic metre	m ³
Frequency	hertz	Hz
Velocity	metre per second	ms ⁻¹
Acceleration	metre per second squared	ms ⁻²
Density	kilogramme per cubic metre	kg m ⁻³
Molar Mass	kilogramme per mole	kg mol ⁻¹
Concentration	mole per cubic metre	mol m ⁻³
Molality	mole per kilogramme	mol kg ⁻¹
Force	newton	Ν
Pressure	pascal	Pa
Energy	joule	J
Electric Charge	coulomb	С
Electron Potential Difference	volt	V

Page 14 of 14 PERIODIC TABLE CH1011:03

																			18/VIII	
		1	2	_					1 H 1.008					13/111	14/IV	15/V	16/VI	17/VII	2 He 4.003	
		3	4							_				5	6	7	8	9	10	
	2	Li	Be											В	С	Ν	0	F	Ne	
		6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18	
		11	12											13	14	15	16	17	18	
	3	Na	Mg											AI	Si	Р	S	CI	Ar	
		22.99	24.30	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95	
		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
σ	4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
0		39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80	
1		37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
Φ	5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe	
Δ		85.47	87.62	88.91	91.22	92.91	95.94	98.91	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3	
		55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	6	Cs	Ba	La-	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
		132.9	137.3	LU	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	210.0	210.0	222.0	
		87	88	A a	104	105	106	107	108	109										
	7	Fr	Ra	AC-	Unq	Unp	Unh	Uns	Uno	Une										
		223.0	226.0	Lr	-	-														
			\	\	\backslash															
			ĸ		JK									p block						
				· \																
				\setminus	```	\														
Lanthanides 57 58 59								59	60	61	62	63	64	65	66	67	68	69	70	71
	, Li				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
\backslash			138.9	140.1	140.9	146.2	144.9	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0			
89				90	91	92	93	94	95	96	97	98	99	100	101	102	103			
Actinide				Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
			227.0	232.0	231.0	238.0	237.0	239.1	241.1	244.1	249.1	252.1	252.1	257.1	258.1	259.1	262.1			
					Г	f b l a c l														
						T DIOCK														