

JAMES COOK UNIVERSITY

P O Box 6811 CAIRNS Qld 4870 Australia Tel: (07) 4042.1275 Fax: (07) 4042 1284

SCHOOL OF PHARMACY AND MOLECULAR SCIENCES Chemistry Department

This paper must be handed in at the end of the Examination: Yes Release to Library: No

SECOND SEMESTER EXAMINATIONS 2004

Cairns Campus

STUDENT NAME: (block letters)

STUDENT NUMBER:

SUBJECT CODE: CH1011:03

SUBJECT NAME: CHEMISTRY FOR THE NATURAL SCIENCES

EXAMINER:	Dr M. Liddell		PHONE NO:	(07) 4042 1275						
DURATION OF EX	XAMINATION (hou	rs):	TWO (2) HOURS							
PERUSAL TIME (1	minutes):		FIFTEEN (15) MINUTE	S						
TOTAL NUMBER	OF QUESTIONS:	27								
INSTRUCTIONS T The exam is compose Section A -	O STUDENTS: ed of two sections: Multiple choice -	22 que	stions - 33%							

Section B - Short answer - 5 questions - 67%

Total marks for paper = 100Answer ALL questions.All questions are not of equal value.Timings are indicated to allow approximately 15 minutes of check-over time.

MATERIALS TO BE SUPPLIED BY EXAMINATION SECTION:

Examination Booklets required:	Yes
Multiple choice scanner sheets Scanner A- E:	Yes

MATERIALS STUDENTS MAY USE: Scientific calculator with no text storage facilities. Access to an English Dictionary:

SECTION A

Yes

MULTIPLE CHOICE QUESTIONS (EACH QUESTION IS WORTH 1.5 MARKS). ANSWER ALL QUESTIONS – SHADE WITH A PENCIL THE MOST CORRECT ANSWER ON THE MULTICHOICE SCANNER SHEET.

Timing: you should complete the multi-choice section in 30 minutes (≈ 1.5 minutes per question).

This section has been deleted it is just multi-choice of the same calibre as the modules.

SECTION B

SHORT ANSWER QUESTIONS. (MARKS FOR EACH QUESTION ARE AS INDICATED) ANSWER EACH OF THE FIVE (5) QUESTIONS.

Question 1

Timing: you should complete this question in 16 minutes.

- (a) (i) There are many different types of solid material.
 - Give an **example** of and **define** an *ionic solid*.
 - Will this material behave as an **electrolyte** when placed in solution and what does the term electrolyte mean?
 - Which member(s) of the following pair of compounds may form intermolecular hydrogen bonds: Illustrate your answer using a sketch showing the presence of hydrogen bonding and the donor and acceptor atoms.

(4 marks)

(b)	(i)	 (i) Provide systematic names for the following compounds: PbCO₃ P₄S₆ 								
	(ii)	Provide formulae for the following compounds:hydrobromic acidstrontium iodide	(4 marks)							
			(T marks)							
(c)	(i)	 Provide electronic configurations for the following: Cr C²⁺ 								
	(ii)	Why is the atomic mass of carbon 12.01 not 12.00?	(3 marks)							
(d)	Provid	 brief reasoning in your answers to the following questions : Which is the larger ion in the following pair? F⁻ and Na⁺. 								

• Provide a definition for the **electron affinity** of Cl (include an equation). (3 marks)

Question 2

Timing: you should complete this question in 16 minutes.

(a) (i) Provide **IUPAC names** for the following compounds:

- (ii) Draw a **3D** *molecular structure* corresponding to the following systematic name :
 1-ethylcyclohexene
 - (S)-2-bromobutane

(6 marks)

- (b) Briefly discuss <u>ONE</u> of the following topics. [In most cases your answer should consist of a few sentences together with any appropriate chemical structures]
 - (i) **D-Glucose** is a monosaccharide. The **Fisher projection** of the molecule indicates the functional groups and chiral centres along the backbone of the carbohydrate.
 - (ii) Proteins are natural **polymers** where the repeat unit varies in the polymer chain according to the **primary structure**.
 - (iii) The **structure** of a **soap** relates closely to the **function** of the compound in removing grease/dirt from soiled objects.

(5 marks)

- (c) Enzymes function as biological catalysts and there are many thousand in every cell.
 - What is an **enzyme**?
 - Provide an **example** of an enzyme system.
 - Illustrate using equations Michaelis-Menton kinetics.

(3 marks)

(4 marks)

Question 3

Timing: you should complete this question in 14 minutes.

- (a) At 500°C sulphur vapour **effuses** at 0.577 times the rate of SO_2 while at 860°C it effuses at the same rate as SO_2 .
 - What is the molecular weight and formula of sulphur vapour at 500°C and 860°C?
 - What is **diffusion**?
- (b) A sugar mill discharges wastewater containing sucrose $(C_{12}H_{22}O_{11})$ as a major impurity which contributes to water pollution. The wastewater contains on average 34.2g sucrose /L water. The possibility exists to pre-treat the wastewater stream using reverse osmosis to remove the sucrose. What pressure must be used in the **reverse osmosis** (in atmospheres) to remove the sucrose completely at 20°C?. (R = 0.0821 atm L /mol K) (4 marks)
- (c) Radiocarbon (¹⁴C) decays by beta radiation to form ¹⁴N. Provide a balanced equation that illustrates this process of beta decay. Demonstrate the principles of **conservation of atomic number** and **conservation of mass number** in your answer.
 - How is ¹⁴C used in radiodating ancient objects?

(4 marks)

Question 4

Timing: you should complete this question in 17 minutes.

- (a) (i) Define the term **Gibbs free energy**.
 - (ii) Calculate $\mathbf{K}_{\mathbf{p}}$ for the following equilibrium.

2FeSO₄(s) Fe₂O₃(s) + SO₂(g) + SO₃(g)

The equilibrium is established by heating solid ferrous sulphate ($FeSO_4$) to 850K in a closed vessel. At equilibrium the total gas pressure is 0.8 atm.

(5 marks)

(b) The cell voltage of the following cell at 298K was found to be +1.059V.

- What is the **cell reaction**?
- Calculate the **standard cell potential** E^{o}_{cell} .
- Calculate the **standard free energy change** ΔG° for the cell reaction.
- Calculate the concentration of chloride ion in the seawater sample.

Data:

$$\begin{array}{rcl} AgCl(s) + e^{-} & \rightarrow & Ag(s) + Cl^{-}(aq) \\ Zn^{2+}(aq) + 2e^{-} & \rightarrow & Zn(s) \end{array} \qquad \begin{array}{rcl} E^{\circ} & = +0.223V \\ E^{\circ} & = -0.761V \\ E^{\circ} & = -0.761V \end{array}$$

(5 marks)

(c) Calculate the **pH** of the following aqueous solutions:

- 0.025 M NaOH
- 0.50 M formic acid (HCOOH). K_A (HCOOH) = 1.8 x 10⁻⁴

(5 marks)

Question 5

Timing: you should complete this question in 14 minutes.

- (a) The **atmosphere** may be divided into the following regions: mesosphere, stratosphere, thermosphere, troposphere.
 - Provide a sketch indicating where each of these regions may be found relative to sea-level.
 - What type of chemistry occurs in the **thermosphere**? Illustrate your answer with the major classes of reactions and some illustrative molecules that may be found in this region of the atmosphere
 - What is the main **non-permanent gas** in the troposphere? Explain why it is called a non-permanent gas.

(4 marks)

- (b) Man has managed to disturb significantly one of the smaller reservoirs in the **carbon cycle**. Make a sketch of this biogeochemical cycle and on your sketch:
 - Indicate the main reservoirs, main chemicals and direction of fluxes.
 - Which is the reservoir that man has disturbed significantly and **how** has this occurred?
 - Why is the **carbonate equilibrium**, which is part of this cycle, important environmentally?

(4 marks)

- (c) Modern **water treatment** plants have a number of stages that are used to take raw water that is not fit for human consumption and turn it into potable (drinking) water.
 - Sketch the typical features of a **water treatment plant** indicating the various stages and indicate which water quality parameter(s) are modified at each stage.
 - Raw water must be monitored before it is used as a freshwater supply. List **2 water quality parameters** and indicate how they would normally be measured.

(4 marks)

EQUATION LIST

$$\begin{pmatrix} p + \frac{n^2 a}{V^2} \end{pmatrix} (V - nb) = nRT \qquad \sqrt{u^2} = \sqrt{\frac{3RT}{M}}$$

$$\frac{R_1}{R_2} = \sqrt{\frac{M_2}{M_1}} \qquad p_i = p_i^0 x_i$$

$$z = \sigma \ \overline{u}_{rel} N \qquad \lambda = \frac{\overline{u}}{z}$$

$$\Delta G^\circ = -RT \ell nK \qquad K = K_p (p^\circ)^{-\Delta n}$$

$$\ell nK = \frac{-\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R} \qquad \ell n \frac{K_2}{K_1} = \frac{-\Delta H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\ell n[A_\circ] - \ell n[A] = kt \qquad k = Ae^{-E_a/RT}$$

$$\ell n \frac{k_2}{K_1} = \frac{-Ea}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \qquad t_{m-l/m} = ln(m) / k$$
For the cell reaction aA + bB $\rightarrow cC$ + dD
$$E_{cell} = E^\circ_{cell} - \frac{RT}{nF} ln \left(\frac{[C]^r [D]^d}{[A]^r [B]^o} \right)$$

$$E^\circ_{cell} = E^\circ_{cathole} - E^\circ_{unole} \qquad \Delta G = -n F E_{cell}$$

$$p_{rotal} = \Sigma p_i \qquad [i] = K_{ti} p_i$$

$$p_i = (\%_i / 100) p_{atm} \qquad \%_i = pmw_i x 10^4$$

$$R.H = \frac{p(H_2O)}{p(H_2O)sat} x 100 \% \qquad Flux = A / \tau$$

$$K_{sig} = [cation]^r [anion]^d \qquad \pi = c_i RT$$

$$\Delta T = K m_i$$

$$\delta = \left(\frac{R_{sample} - R_{standard}}{R_{standard}} \right) x 10^3 \% \circ$$

$$10^3 \ln \alpha \approx \frac{A}{T^2} + B = \delta_A - \delta_B$$

 $\mathbf{R} = 8.314 \ \mathbf{J} \ \mathbf{mol}^{-1} \ \mathbf{K}^{-1} = 8.314 \ \mathbf{Pa} \ \mathbf{m}^3 \ \mathbf{mol}^{-1} \ \mathbf{K}^{-1}$

 $T(K) = T(^{\circ}C) + 273.15$

1 mole of an ideal gas occupies 22.41 dm³ at STP

1 atm. = 1.013 x
$$10^5 \text{ Pa} = 760 \text{ torr}$$

F = 9.65 x 10^4 C mol^{-1}

TABLE 1

$CaCO_3 + 2H^+$	$\rightarrow Ca^{2+} + CO_2 + H_2O$
$CaCO_3 + H_2SO_4 + H_2O$	\rightarrow CaSO ₄ .2H ₂ O + CO ₂
$4\text{FeS}_2 + 15\text{O}_2 + 14\text{H}_2\text{O}$	\rightarrow 4Fe(OH) ₃ + 8H ₂ SO ₄
$2SO_2 + 2H_2O + O_2$	$\rightarrow 2H_2SO_4$ (Mn cat.)

TABLE 2

Physical Quantity	Name of Unit	Symbol for Unit
Length	metre	m
Mass	kilogramme	kg
Time	second	S
Electric Current	ampere	а
Thermodynamic Temperature	kelvin	K
Amount of Substance	mole	mol
Volume	cubic metre	m ³
Frequency	hertz	Hz
Velocity	metre per second	ms ⁻¹
Acceleration	metre per second squared	ms ⁻²
Density	kilogramme per cubic metre	kg m ⁻³
Molar Mass	kilogramme per mole	kg mol ⁻¹
Concentration	mole per cubic metre	mol m ⁻³
Molality	mole per kilogramme	mol kg ⁻¹
Force	newton	Ν
Pressure	pascal	Pa
Energy	joule	J
Electric Charge	coulomb	С
Electron Potential Difference	volt	V

Page 14 of 14 PERIODIC TABLE CH1011:03

																			18/VIII	
		1	2	_					1 H 1.008					13/111	14/IV	15/V	16/VI	17/VII	2 He 4.003	
		3	4							_				5	6	7	8	9	10	
	2	Li	Be											В	С	Ν	0	F	Ne	
		6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18	
		11	12											13	14	15	16	17	18	
	3	Na	Mg											AI	Si	Р	S	CI	Ar	
		22.99	24.30	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95	
		19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
σ	4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
0		39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80	
1		37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
Φ	5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe	
Δ		85.47	87.62	88.91	91.22	92.91	95.94	98.91	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3	
		55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	6	Cs	Ba	La-	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
		132.9	137.3	LU	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	210.0	210.0	222.0	
		87	88	A a	104	105	106	107	108	109										
	7	Fr	Ra	AC-	Unq	Unp	Unh	Uns	Uno	Une										
		223.0	226.0	Lr	-	-														
			\	\	\backslash															
		a blog	k	dhlad										n blook						
			ĸ		JK									p DIOCK						
				· \																
				\setminus	```	\														
Lanthanides 57 58 5								59	60	61	62	63	64	65	66	67	68	69	70	71
`					١.	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
\backslash				138.9	140.1	140.9	146.2	144.9	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173.0	175.0		
\backslash						89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinide				Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
				\	227.0	232.0	231.0	238.0	237.0	239.1	241.1	244.1	249.1	252.1	252.1	257.1	258.1	259.1	262.1	
					Г	f b l a c l														
						T DIOCK														